
Special Issue on “Digital Libraries in Medicine”
Real-Time Digital Libraries Based on Widely Distributed, High
Performance Management of Large-Data-Objects

William Johnston, Jin Guojun, Case Larsen, Jason Lee, Gary Hoo, Mary Thompson, Brian Tierney,

and Joseph Terdiman, M.D.*

Imaging and Distributed Computing Group, Information and Computing Sciences Division, Ernest Orlando Lawrence Berkeley National

Laboratory,1 Berkeley, CA 94720, USA
* Kaiser Permanente, Division of Research, Oakland, CA 94611, USA

Abstract: We describe a distributed, wide area network
based approach to collecting, cataloguing, storing, and
providing Web access for large-data-objects that originate as
high-speed data streams. Such data streams result from the
operation of many types of on-line instruments and imaging
systems, and are a “staple” of modern intelligence, scientific,
and health care environments. The approach provides for
real-time conversion of the data streams and large datasets to
“objects” that are manageable, extensible, searchable,
browsable, persistent, and available to both “ordinary” and
high performance applications through the integration of a
high-speed distributed cache and transparent management of
tertiary storage. The user interfaces — for both application
users and data collection curators — are provided by the
capabilities of the World Wide Web.

The capabilities of the architecture are not unlike a digital
library system, and we give an example of a digital image
library that has been built using this architecture. However,
our approach particularly addresses the issues involved in
creating such digital library-like collections automatically
from the high date-rate, real-time output of, e.g., satellite
imaging systems, scientific instruments, health care imaging
systems, etc.

We discuss the capabilities, architecture, and implementa-
tion of such a system, as well as several example applications
in data-intensive environments. The applications include a
metropolitan area ATM network based, on-line health care
video imaging system, and several image database applica-
tions, including a photographic-image library (see [9]). We

also describe the security architecture used to enforce data
owner imposed access conditions.

Keywords: on-line high data-rate instruments, large-scale
storage, high-speed networks, tertiary storage management,
digital libraries

1 Introduction

We are evolving a strategy for using high-speed wide-area
networks as enablers for widely available high capacity, high
performance storage systems, and for the management of
data from on-line instruments and imaging systems. The
high-level goal is to dramatically increase our ability to
capture, organize, search, and provide high-performance and
location independent access to “large-data-objects” (LDOs).
The data-components of these objects — typically the result
of a single operational cycle of a scientific instrument,
medical imaging system, or supercomputer run, and of sizes
from tens of megabytes to tens of gigabytes — are the staple
of modern analytical environments. It is also the case that
many of the systems that generate such data-objects are used
by a diverse and geographically distributed community —
examples from the sciences include physics and nuclear
science high energy particle accelerators and detector
systems, large electron microscopes, ultra-high brilliance X-
ray sources, etc. The health care community has similarly
complex imaging and instrumentation systems. In all of these
cases, dispersed user communities require location
independent access to the data.

In any scenario where data is generated in large volumes
and with high throughput, and especially in a distributed
environment where the people generating the data are geo-
graphically separated from the people cataloguing or using
the data, there are several important considerations for man-
aging instrument generated data:

1. The work described in this paper is supported by the U. S. Dept. of
Energy, Office of Energy Research, Office of Computational and Technol-
ogy Research, Mathematical, Information, and Computational Sciences
Division (http://www.er.doe.gov/production/octr/mics) and the ER-LTT pro-
gram, under contract DE-AC03-76SF00098 with the University of Califor-
nia, and by DARPA, Computer Systems Technology Office (http://
ftp.arpa.mil/ResearchAreas.html). Contact: wejohnston@lbl.gov, Lawrence
Berkeley National Laboratory, mail stop: B50B-2239, Berkeley, CA, 94720,
ph: 510-486-5014, fax: 510-486-6363, http://www-itg.lbl.gov). This is
report no. LBNL-39613.

Preprint - International Journal of Digital Libraries

2 William Johnston,et al.

• automatic generation of at least minimal metadata;
• automatic cataloguing of the data and the metadata as the

data is received (or as close to real time as possible);
• transparent management of tertiary storage systems where

the original data is archived;
• facilitation of co-operative research by providing specified

users at local and remote sites immediate as well as long
term access to the data;

• incorporation of the data into other databases or
documents.

The WALDO (“wide-area large-data-object”) system is a
digital data archive that federates textual and URL linked
metadata to represent the characteristics of large data sets.
Semi-automatic cataloguing of incoming data is accom-
plished by extracting associated metadata and converting it
into text records, by generating auxiliary metadata and
derived data, and by combining these into Web-based objects
that include persistent references to the original data-compo-
nents. Tertiary storage management for the data-components
(i.e., the original datasets) is accomplished by using the
remote program execution capability of Web servers to man-
age the data on a mass storage system. For subsequent use,
the data-components may be staged to a local disk and then
returned as usual via the Web browser, or, as is the case in
several of our applications, moved to a high speed cache for
access by specialized applications. The location of the data-
components on tertiary storage, how to access them, and
other descriptive material, are all part of the LDO definition.
The creation of object definitions, the inclusion of “standard-
ized” derived-data-objects as part of the metadata, and the
use of typed links in the object definition, are intended to
provide a general framework for dealing with many different
types of data, including, for example, abstract instrument
data and multi-component multimedia programs.

WALDO uses an object-oriented approach to provide for
capture, storage, catalogue, retrieval, and management of
large-data-objects and their associated metadata. The archi-
tecture includes a collection of widely distributed services to
provide flexibility in managing storage resources, reliability
and integrity of access, and high performance access, all in
an open environment where the use-conditions for resources
and stored information are guaranteed through the use of a
strong, but decentralized, security architecture.

The remainder of the paper is organized as follows. In
Section 2 we describe the motivation, model and architecture
for handling large-data-objects, and the elements, implemen-
tation, and applications of that architecture. We also briefly
describe the architecture of the Distributed Parallel Storage
System — a distributed cache that is used to provide a very
high-speed, network-based data cache, and which is a key
element of the large-data-object architecture. In Section 3 we
describe two applications of the LDO approach. In Section 4

we discuss some of the design issues and their resolution. In
Section 5 we briefly describe the security architecture. In
Section 6 we describe our experience and the status of the
system.

2 Distributed Large-Data-Objects

2.1 Motivation

The advent of shared, widely available, high-speed networks
is providing the potential for new approaches to the
collection, organization, storage, and analysis of large-data-
objects. In one typical example, high-volume health care
video and image data used for diagnostic purposes — e.g.,
X-ray CT, MRI, and cardio-angiography, are collected at
centralized facilities and, through the use of the system
described here, may be stored, accessed, managed, and
referenced at locations other than the point of collection
(e.g., the hospitals of the referring physicians).

In health care imaging systems the importance of remote
end-user access is that the health care professionals at the
referring facility (hospitals or clinics frequently remote from
the tertiary imaging facility) will have ready access to not
only the image analyst’s reports, but the original image data
as well. Similarly with data intensive, distributed scientific
collaborations, researchers at various sites remote from the
data generation and storage require ready access to the data
objects. See, e.g., [11] and [7].

The importance of providing and managingdistributed
access to storage is that laboratory instrumentation environ-
ments, hospitals, etc., are frequently not the best place to
maintain a large-scale digital storage system. Such systems
can have considerable economy of scale in operational
aspects, and an affordable, easily accessible, high-bandwidth
network can provide location independence for such systems.

2.2 Overview

Large-data-objects are a structured collection of metadata,
including links to data-components. The metadata typically
describes characteristics of the data components, provides
access methods information, access control information, etc.
Metadata frequently also includes derived data that provide,
for example, viewable versions of the data-components. In a
sense our LDOs are as much a catalogue entries as objects
(since the actual data is usually external to the LDO), but
LDOs are intended to be, and are used as, object definitions
for large data sets generated by various systems.

The LDO approach provides a mechanism for describing
and manipulating “objects” that are the result of federating

Real-Time Digital Libraries Based on Widely Distributed, High Performance Management of Large-Data-Objects 3

data-components from many different sources and locations:
local files, remote Web sites, remote mass storage systems,
etc. Since this work is in the realm of research and develop-
ment, we have chosen to use the MIME multipart message
standard ([17], [18], [19], and [20]) to provide an open and
extensible mechanism for object definition. This is a rapidly
changing field, and this MIME-based approach may be
replaced by the World Wide Web Consortium, Meta Content
Framework ([2]).

The elements of our large-data-object model include gen-
eralized object definition (a class); groups of associated
objects called “collections”; and access, search, data entry
and security methods for managing the object definition.
The object definition is manifested as a Web document that
contains metadata in the form of text and typed links to asso-
ciated objects (e.g., derived information), and typed links to
the original large-data-component locations. The typed links
are generally URLs with an associated MIME type (see
[17]). The typing allows a user or application to locate
appropriate data access methods in advance of requesting a
(potentially large) data component. Each of the object com-
ponents can typically be referenced as an individual Web
entity, and located, accessed, and manipulated through Web
servers using the HTTP protocol. Applications can use the
HTTP protocol to request data components, and users can
access data directly via Web browsers. Data may be returned
directly to the browser or to an application that can use the
access method specified by the corresponding MIME type.
In the case of high-performance applications, handles to the
data on the distributed high-speed cache are returned to the
application.

A typical user interface to a large-data-object class using
this model can be illustrated by a collection of high resolu-
tion microscope images that form a digital-photo collection

(seehttp://imglib.lbl.gov). In this case, the images are
organized into “sub-collections” (an associated set of objects
of one class) partly for ease of browsing and partly to facili-
tate curation. The object class (collection) has associated
search methods, object access methods, and security meth-
ods to enforce use-conditions. A Web browser accesses an
LDO component via a URL request that typically invokes a
Web server cgi-script that implements the necessary meth-
ods. The user requests may be for searching, displaying
some or all of the LDO components, or modifying the LDO
components (collection curation). The digital images in this
collection are generated by an off-line scanning electron
microscope and are loaded into the Lab’s mass storage sys-
tem by bulk file transfer. Sets of images, representing several
days’ work are entered into the Image Library with one
operation. The textual metadata that is common to a whole
set is preloaded and copied automatically to each image, the
thumbnails are generated automatically. Later the curator
may add additional metadata for specific images. An exam-
ple of automatic LDO generation from an on-line instrument
is described later in this paper.

2.2.1 WALDO Example

To illustrate the WALDO approach to object libraries, we
will use a research image collection to illustrate the various
user interfaces and the overall model, as well as the structure
of large-data-objects.

The image library user typically first enters the top level
collection index (Figure 1) and initiates a search (on, e.g.,
the textual metadata as in Figure 2). The textual metadata
search method is provided by a modified version of glimpse
[6]. The result of the approximate search specified as in Fig-
ure 2 is illustrated in Figure 3. The LDOs that satisfy the

Figure 1. A top level collection index. Figure 2. The collection metadata search form.

4 William Johnston,et al.

Figure 3. The (partial) results of the search
specified in the form illustrated in Figure
2.

Figure 4. The Web browser
manifestation of an LDO definition
document.

Real-Time Digital Libraries Based on Widely Distributed, High Performance Management of Large-Data-Objects 5

search are represented as a set of “thumbnails” (derived data
elements), pointers to the primary data elements (e.g.,
“Fig._4d._bottom.bright” — a 1.4 Mbyte TIFF-image file in
this case), and the “context” in the tag-field in which
glimpse found the search term. The displayed context links
to the LDO definition document (Figure 4). The thumbnail
image in the LDO document links to (what is for this collec-
tion) the primary derived data element (a screen-size image,
e.g., Figure 5). Figure 6 illustrates one of the browser inter-
faces. The ability to both search and browse based on the
metadata are important elements of our digital library
model.

For the data-components that reside only on tertiary stor-
age (e.g., a tape-robot-based mass storage system), there is
an option for forcing migration of these LDO components
back to an on-line cache. The interface for managing the ter-
tiary storage (e.g., a hierarchical mass storage system) is
illustrated in Figure 7.

Another aspect of the model is that there are derived-
data-components that are viewable with “standard” Web
browsers. The original data-components — very large, high
resolution, full color TIFF format images in the case of the
digital-photo library or DICOM images in the case of medi-
cal libraries — are typically not directly viewable.

2.3 Functionality Goals

Our model for the capabilities of a distributed large-data-
object system includes the following elements:

• real-time cataloguing of extensible, linked, multi-
component data-objects that can be asynchronously
generated by remote, on-line data sources

• class-based methods for management of the large-data-
objects

• on-line metadata, with cacheable off-line components.
• representation of the object components as Web-

accessible elements
• explicit association of access methods with the data

components
• flexible curator / collection-owner management of

collections of data-objects, including “any-time”
management of the collection organization and object
metadata

• globally unique and persistent naming of the objects and
their various components via URLs and URNs

• strong access control at the level of individual object
components based on use-condition certificates managed
by the data owner

• high-performance application access to the data-
components

• flexible and extensible approaches to searching.

2.4 LDO Structure, and WALDO Data Model and Software

Architecture

Our model for “objects” includes:

◆ A large-data-object (LDO), consisting of
• a standard set of identifying information (e.g., class,

unique id, owner, collection name)
• one or more typed links to the original data-

components
• one or more typed links to derived data-components
• tags defining access control in terms of pointers to the

entities who set access conditions and pointers to the
servers where access condition certificates are located

• class-specific textual metadata

◆ An LDO is an instantiation of a class prototype. Each
LDO contains a subset of the data elements defined for its
class. An LDO is manifested as a persistent Web
document, and class browsers can display some or all of
its components. Small components, e.g., text and
thumbnail images, may be directly displayed by
browsers. Data-components are referenced by a persistent
URL. An LDO class is provided with
• search methods
• data component access methods
• data entry methods
• access control methods

◆ Collections consist of LDO’s and hierarchically
organized sub-collections of LDOs in that class

◆ Class / collection roles
• collection owner

- establishes agreements with the WALDO Web serv-
er for resources

- defines the LDO classes for the collection
- defines the basic access control parameters, includ-

ing potential delegation of authority for setting
access conditions

• curators are users with write access to objects, and can
- add, delete, and modify LDOs or components of

LDOs
- manage the collection structure (can create sub-col-

lections and may move LDOs between sub-
collections)

Figure 8 illustrates the data flow and overall organization of
the WALDO architecture. It also indicates the central role of
high-speed cache which is used both for initial data
collection, and to provide subsequent high-speed access by
applications.

The basic elements of the architecture (referring to Figure 8)
include:

• data collection systems and the instrument-network
interfaces (1)

6 William Johnston,et al.

Figure 5. A typical object representation that is
automatically derived from the original data when the LDO

Figure 6. The result of browsing the collection that contained
one of the results of the query illustrated in Figure 2.

Figure 7. The tertiary storage system
management interface. Data-components can
be selectively migrated from archival storage
back to on-line storage.

Real-Time Digital Libraries Based on Widely Distributed, High Performance Management of Large-Data-Objects 7

• high-speed, network-based cache storage for receiving
data, for providing intermediate storage for processing,
and for high-speed application access (2)

• transparent tertiary storage (“mass storage”) management
for the data-components (8)

• processing mechanisms for various sorts of data analysis
and derived data generation (3)

• data management that provides for the automatic
cataloguing and metadata generation that produces the
large-data-object definitions (4)

• data access interfaces, including application-oriented
interfaces (5)

• curator interfaces for managing both the metadata and the
LDO collection organization

• user access interfaces for all relevant aspects of the data
(applications, data, and metadata)

• flexible mechanisms for providing various searching
strategies (6)

• transparent security that provides strong access control
for the data components based on data-owner policies (7)

These elements are all provided with flexible, location-
independent interfaces so that they can be freely
(transparently) moved around the network as required for
operational or other logistical convenience.

2.4.1 The Distributed-Parallel Storage System—A High-
Performance Network Cache

A high performance, widely distributed, network storage
system is an essential component of a network-based large-
data-object environment. Within the high performance
network cache — a “middleware” service — the
architectural issues include:

• highly distributed and parallel cache operation
• distributed, autonomous component management
• user access methodologies
• security architecture

Distributing the components of a storage system through-
out the network can increase its capacity, reliability, perfor-
mance, and security. Usable capacity increases through the
aggregation of distributed storage components. Highly reli-
able access can be provided through redundancy of data and
storage systems that are configured from components that
have little in common (e.g., location). Performance is
increased by the combined characteristics of parallel opera-
tion of many sub-components, and the independent data
paths provided by a large network infrastructure. Security is
potentially increased by having many independent compo-

Application
◆ cache-based or

Web-based
access to LDO
components

LDO “object”
description

generation (4)

consumerproducer
(capture, catalogue)

Web browser
◆ data-user interface
◆ curator interface

Processing (3)
◆ generate:

• object template

• metadata

• derived represen-
tations

◆ manage initial
archival storage

search engine (6)

m
et

ad
at

a
DPSS (2)

◆ high speed data
cache for
incoming data

Web server
◆ LDO access

methods
◆ search engine

management
◆ cache/MSS

management (8)
◆ some LDO data-

components

Data
Source (1)

◆ collection
◆ buffering
◆ network

transport

DPSS (2)
◆ cache for high

speed application
access to data

MSS
◆ tertiary storage archiving

of large-data-
components

local storage
◆ WALDO Web

server based
LDO
component
storage

access control (7)

public-key
infrastructure
use-condition

certificates

object management
(persistence, metadata mg’mt,

storage mg’mt)

(5)

(5)

Figure 8. The distributed Large-Data-Object overall architecture and data flow.

8 William Johnston,et al.

nents, each of which has local and independent enforcement
mechanisms that can limit the scope of a security breach.

The Distributed-Parallel Storage System (“DPSS”) is an
experimental system in which we are developing, imple-
menting, and testing these ideas. In most configurations, the
DPSS is used as a network-based, high performance, random
access logical block server designed to supply and consume
high-speed data streams for other network-based processing
systems. (See [21].)

The DPSS is a “logical block” server whose functional
components are distributed across a wide-area network. (See
Figure 9.) The DPSS is fundamentally a random-access logi-
cal block server: There is no inherent organization to the
blocks, and in particular, they would never be organized
sequentially on a server. The data organization is determined
by the application as a function of data type and access pat-
terns so that a large collection of disks and servers can oper-
ate in parallel enabling the DPSS to perform as a high-speed
data source or data sink.

At the application level, the DPSS provides a semi-persis-
tent cache of named data-objects, and at the storage level it is
a logical block server. Although not strictly part of the DPSS
architecture, the system is usually provided with application
libraries that implement data set access methods. These pro-

vide object-like encapsulation of the data in order to repre-
sent complex user-level data structures so that the application
does not have to retain this information for each different
data set. Data access methods currently include simple video
data access and the more complex access methods required

by TerraVision and STAR.2 The access method converts the
application requests into logical block requests. These logi-
cal block requests are then sent to the DPSS Master which
serves two functions: logical block name translation and
resource management. Resulting physical block requests are
forwarded to disk servers that return data directly to the
application using parallel data paths.

3 Applications

We currently have two example applications of the LDO
architecture. One is a metadata-based digital image library
system that is oriented toward curation. That is, the structure
and tools of the system are intended to provide for easy and

returned data stream
(“parallel third-party” transfers
directly from the storage servers

to the application)

Application
(client)

◆ block storage
◆ block-level access control

Disk Servers

security context - 1
(system integrity &
physical resources)

Application data access
methods

(data structure to logical block-
id mappings - e.g.:

◆ JPEG video
◆ multi-res image pyramids
◆ Unix r/w
◆ XDR

data
requests

security context - 2
(data use conditions)

Agent-based
management of dataset
metadata - locations,

state, etc.

Agent-based
management
of redundant

Masters

Agent-based management of
storage server and network state

vis a vis applications

mem
buf

physical
block

requests logical block
requests

Data Set Manager
◆ user security context

establishment
◆ data set access control
◆ metadata

Request Manager
◆ logical to physical name

translation
◆ cache management

DPSS API
(client-side library)

Resource Manager
◆ allocate disk resources
◆ server/disk resource access

control

DPSS Master

Figure 9. The Distributed-Parallel Storage System architecture.

2. TerraVision is an interactive terrain navigation application using multi-
resolution, tiled, image pyramids [13]. STAR is an external data representa-
tion access (XDR) method [7].

Real-Time Digital Libraries Based on Widely Distributed, High Performance Management of Large-Data-Objects 9

continuous maintenance by the data owners. The second
example is a real-time data capture and cataloguing system
that is oriented toward the automated capture of data from
on-line instruments and the creation of digital libraries on-
the-fly.

3.1 Curator Managed Collections: Digital-Image Libraries

Digital image libraries require flexible curator management
functions so that curators from a variety of backgrounds can
easily maintain their own collections. One user community
is scientists who maintain annotated image collections that
are associated with their scientific laboratory environment.
These collections are used like a laboratory notebook, and
are continuously updated. See, for example (as in Figure 6)
http://imblib.lbl.gov/cgi-bin/ImgLib/displaytag/

LUNG_DEMO/tags/Fig.2?both=small) .

Another use of this flavor of the system is the “Berkeley Lab
On-line Photo Archive” (http://imglib.lbl.gov/ImgLib/

photo-archive.html). This application is essentially the
same as the annotated scientific image collection, but the use
characteristics are somewhat different. In particular, this
collection undergoes a lot of rearrangement as it grows and
the subject matter diversifies. Persistent references are also
very important in this collection, as the intent is for many
other documents to use this collection to provide their
images via links (e.g., the “LBL Newsmagazine, Fall 1981:
50th Anniversary Issue” athttp://imglib.lbl.gov/

LBNL_Res_Revs/50th). This has raised some interesting
design issues that are discussed in Section 4.

3.2 Automatically Generated Collections: Real-Time
Capture and Cataloguing of Data from On-line Instruments

The model for real-time capture and cataloguing is that a
data source generates units of data that have associated
auxiliary information. As the data is processed in real-time,
the “units” can be identified as such, and the appropriate
associated data can also be identified.

A key issue with “identification” of a unit of data is to
know when the unit has been completely received so that
cataloguing and processing to create an LDO can com-
mence. This identification can take the form of explicit in-
band markers in the data stream, or out-of-band notification
that all of the data of one unit has been sent, or the identifica-
tion could be implicit, such as a data unit being defined by a
timing mechanism (e.g., one data unit is whatever is
received in some specified period of time) or by a quantity
mechanism (e.g., one data unit is a fixed quantity of data).

Likewise, the acquisition of associated data (metadata
pre-cursors) can be via explicit in-band or out-of-band sepa-
rate data units, or implicit (e.g., the timestamp of a data unit
whose boundary is defined by a point in time).

3.2.1 Video Data: On-line Cardio-angiography

An example of a medical application that uses the
automatically managed approach is a system that provides
for collection, storage, cataloguing, and playback of video-

angiography data.3

“Cardio-angiography is used to monitor and restore
coronary blood flow, and though clinically effective,
the required imaging systems and associated facilities
are expensive. To minimize the cost of such
procedures, health care providers are beginning to
concentrate these services in a few high-volume
tertiary care centers. Patients are typically referred to
these centers by cardiologists operating at clinics or
other hospitals; the centers then must communicate
the results back to the local cardiologists as soon as
possible after the procedure. The advantages of
providing specialized services at distant tertiary
centers are significantly reduced if the medical
information obtained during the procedure is not
delivered rapidly and accurately to the referring
physician at the patient’s home facility. The delivery
systems currently used to transfer patient information
between facilities include interoffice mail, U.S. Mail,
fax machine, telephone, and courier. Often these
systems are inadequate and potentially could
introduce delays in patient care.” (From [12].)

Using a shared, metropolitan area ATM network, and a high-
speed distributed data handling system, video sequences are
collected from the video-angiography imaging system, then
processed, catalogued, stored, and made available to remote
users. This permits the data to be made available in near

real-time to remote clinics (see Figure 10). The LDO
becomes available as soon as the catalogue entry is
generated — derived data is added as the processing
required to produce it completes. Whether the storage
systems are local or distributed around the network is
entirely a function of the optimal logistics.

This application was developed in the Kaiser CalREN
project, a joint project of Lawrence Berkeley National Labo-
ratory, Kaiser Permanente, Philips Palo Alto Research cen-
ter, and the Pacific Bell CalREN program [12]. Angiography
data is collected directly from a Philips scanner by a com-
puter system in the San Francisco Kaiser hospital Cardiac
Catheterization Laboratory. This system is, in turn, attached
to an ATM network provided by the National Transparent
Optical Network testbed (NTON). NTON provides OC-3
(155 Mbits/s) and OC-12 (622 Mbits/s) connections to a
very high-speed backbone (see [15]). When the data collec-

3. Cardio-angiography imaging involves a two plane, X-ray video imaging
system that produces from several to tens of minutes of digital video
sequences for each patient study for each patient session. The digital video
is organized as tens of data-objects, each of which are of the order of 100
megabytes.

10 William Johnston,et al.

tion for a patient is complete (about once every 20–40 min-
utes), 500–1000 megabytes of digital video data is sent
across the ATM network to LBNL (in Berkeley) and stored
first on the DPSS, and then the LDO object definitions are
generated and made available via the Web. Auxiliary pro-
cessing and archiving to one or more mass storage systems
proceeds independently. This process goes on 8–10 hours a
day.

The WALDO management tools provide the Web based
user interface to the data, and to appropriate viewing applica-
tions. Hospital department-level Web-based patient databases
can then refer directly to the data in WALDO without dupli-
cating that data, or being concerned about tertiary storage
management (which is handled by WALDO).

Figures 11-13 illustrate the user environment provided by
the WALDO model for this application.

Figure 11 illustrates browsing the top-level of the angiog-
raphy collection. A “year” or “hospital-of-patient-origin”, or
both, will probably eventually be added to the collection
hierarchy above these individual study pointers as part of the
collection curation. If this is done, then the persistence mech-
anisms described in Section 4 will come into play so that

links created while the collection has its current organization
will remain valid.

Figure 12 illustrates browsing a collection of LDOs (in
this case, related by the fact that they are all for a single
patient study). At the top of the page is a brief description of
the collection (the study identifiers in this case), some stan-
dard instructions, and the tertiary storage migration interface.
This is followed by the two special applications that under-
stand the bi-plane video format. These are invoked from the
Web page, and the normal mode of operation is to view all of
the video segments of a study in sequence. When these view-
ers are invoked they are also given all of the pointers to the
original dataset components of the LDO. To facilitate access
from unmodified Web browser environments, one of derived
data types is an MPEG coding of the video.

Figure 13 illustrates the result of invoking the bi-plane
video player that accesses data from the network cache.

Kaiser San Francisco Hospital
Cardiac Catheterization Lab

(digital video capture)

NTON
network
testbed

to the MAGIC
testbed

LBNL
WALDO server and

DPSS for data
processing,

cataloguing, and
storage

Kaiser
Division of
Research

(physicians)

Kaiser Oakland
Hospital

(physicians and
databases)

Lawrence Berkeley
National Laboratory and

Kaiser Permanente
On-line Health Care
Imaging Experiment San Francisco Bay Area

Figure 10. Physical architecture of the health care imaging application as it is embedded in the National Transparent Optical Network
testbed.

Real-Time Digital Libraries Based on Widely Distributed, High Performance Management of Large-Data-Objects 11

Figure 11. An index built from incoming angiography video data
in real-time.

Figure 12. The browser interface for a sub-collection that
represents one patient study (multiple video clips).

Figure 13. The user interface of
the special application that
displays the bi-planar video-
objects directly from the DPSS
cache.

12 William Johnston,et al.

4 Experience and Design Issues

Probably the predominant characteristic of cataloguing live
data sources is that the LDO components — data-
components, metadata and derived data — show up
asynchronously as a natural result of the automated
processing of the data-components and metadata that go into
making up an LDO. To accommodate automated processing,
and meet the capability objectives, several different methods
of representing, storing, and presenting the information
resulting from LDO generation have been tried in the course
of the evolution of the LDO implementation. The approach
that has addressed several issues is to have the various Web
accessible representations of LDOs and their components be
dynamically generated by a collection of object management
methods. These methods typically scan the collection for
new object components, and generate an html document that
presents those components (e.g., the object browser
illustrated in Figure 12).

4.1 Dynamic indexing

Since the complete large-data-object is produced over as
much as several days (some of the processing for the derived
files — e.g., MPEG coding of video — can be very time
consuming) a natural way to produce the Web
representations of the LDO definitions is to generate them
on-the-fly. For example, the LDO definition document shown
in Figure 4 was generated using the LDO access method
“displaytag”, invoked by the Web invocation:

http://imglib.lbl.gov/cgi-bin/ImgLib/
displaytag/LUNG_STRUCTURE/tags/
Fig_4d._bottom.bright (1)

Figure 6 illustrates a dynamically created browsable index
for the “Lung_Structure” collection of high-resolution digital
microscope images. This index is generated by a single Web
cgi invocation that looks like:

http://imglib.lbl.gov/cgi-bin/ImgLib/
makeindex?LUNG_STRUCTURE=browse (2)

(In other words, the “makeindex ” program is invoked with
arguments “LUNG_STRUCTURE” and “browse ” to index this
sub-collection.)

This technique provides the curator with the flexibility to
reorganize the collections and be assured that the browsable
indexes the user sees are always up-to-date.

This same general approach is used for most Web-based
manipulation of LDOs. However, while this approach pro-
vides several of the desired capabilities, it does not, on the
face of it, provide the required persistence characteristics.

4.2 Persistence

There are several aspects of persistence that we would like to
provide, including global and easily usable names for both
the LDOs and their primary components.

Naming uniqueness, and persistence (up to, but not
including, the Internet DNS name of the WALDO Web
server), can be provided by including a globally unique
object identifier (OID) in each LDO. Our approach involves
several points.

First, we generate an OID during the LDO creation that is
of the form:

Internet_DNS_name-process_id-
time_of_day_in_nanoseconds (3)

Second, as one of the LDO methods, we have provided the
capability to locate and refer to an LDO component:

find_component (OID, component_name) (4)

Which can be invoked as a cgi request:

http://imglib.lbl.gov/cgi-bin/ImgLib/
find_component?<OID>&<component_name> (5)

Ignoring, for the moment, the general issue of LDO
component naming, at least one standard invocation of this
function, e.g.,

find_component (OID,’LDO-html’) (6)

will always return an html version of the LDO definition
corresponding to the given OID. (E.g., Figure 4.)

With standard tags (or their aliases), the
find_component method can perform a search of OID-
space and return the requested component based on the tag.
For example

http://imglib.lbl.gov/cgi-bin/ImgLib/
find_component?<OID>&thumbnail (7)

obtains the “thumbnail” derived visual for any LDO in those
classes that use the thumbnail concept.

To provide an “easily used” persistent reference we build
a permanently instantiated (but periodically updated) index
document at the collection level. The index entries consist of
the collection name (which can change as the collection is
reorganized), a short LDO description, and the text of the
persistent URL (e.g., (5), above) that will return the html ver-
sion of the LDO. For example, the index entry

BERKELEY-LAB HISTORY SEABORG-
PERSPECTIVE JFK visiting Lawrence
Radiation Laboratory, March 23, 1963

Real-Time Digital Libraries Based on Widely Distributed, High Performance Management of Large-Data-Objects 13

(OID=imglib.lbl.gov:123426:83341287767
634000)

URL= http://imglib.lbl.gov/cgi-bin/
ImgLib/find_component?imglib.lbl.gov-
12342683341287767634000&LDO-html (8)

is the text string defining the name of the underlying link:

<a href="http://imglibe/ImgLib/
COLLECTIONS/BERKELEY-LAB/HISTORY/
SEABORG-PERSPECTIVE/index/
96B05392.html">
BERKELEY-LAB HISTORY SEABORG-
PERSPECTIVE JFK visiting Lawrence
Radiation Laboratory, March 23, 1963
(OID=imglib.lbl.gov:123426:83341287767
634000)URL= http://imglib.lbl.gov/cgi-
bin/ImgLib/
find_component?imglib.lbl.gov-12346-
83341287767634000&LDO-html) (9)

As an optimization, the actual links may point to a “local”
copy of the html version of the LDO metadata, rather than to
the cgi invocation that searches for and returns the “real”
metadata (i.e., the query represented by the version of the
URL in (8)). Both the html document that is the index set,
and the local html version of the LDO, are automatically
updated periodically to maintain consistency with the
underlying metadata. The index document is kept in a “well
known” location, typically at the top level of a collection
hierarchy.

This technique addresses a number of related issues.
“Easy use” comes from being able to “manually” browse a
complete index that is a persistent Web document whose
entries contain enough information so that:

• visual browsing is meaningful;
• Web search engines can pickup this document and index

the LDO keywords;
• the URL is visible to the human user so that it can be “cut

and pasted” from the Web browser interface.

4.2.1 URNs and Persistent Web Server Names

One issue of persistence that is not addressed by the
techniques described above is that of naming the Web server
where a collection is located (and a server, therefore, that
can respond to a query like (7)).

The LDO approach is intended to be consistent with the
URN concept ([16]). URNs have two aspects: naming and
resolution [22]. Naming must conform to a scheme that
ensures uniqueness. Resolution is the process of locating a
system (resolver) that can return the location of a server
capable of providing (among other things) the URL for the
named resource.

For example, the URN for an LDO can include the OID
and any of the metadata (e.g. the keywords), plus the LDO-

server name. A URN can provide a location independent and
globally persistent “name” for the LDO. When the URN is
resolved, it can return the current server where the LDO is
located. While the URN never changes, what it resolves to
will change, when, e.g., it is necessary to update the meta-
data, or if the LDO collection home Web server changes.

In the case of LDOs, in order to acquire a resource we
need the name of the Web server that can resolve an OID to
a resource / object. While in general one may wish to pro-
vide a URN for every OID, if LDOs are organized into col-
lections that are constrained to reside on single systems
(though there may be multiple instances of these single sys-
tems) — in other words, a sub-collection is not split across
several Web servers — then assigning URNs for the collec-
tion name is sufficient. In this circumstance, given the col-
lection name, resolving the corresponding URN will return
the name(s) of servers that can provide the OID-labeled
resource. (This ignores the issue discussed in the design doc-
ument noted below — of moving an LDO from one collec-
tion to another. URNs at the collection level also assume that
you know the collection that contains the object of interest.)

In principle, several URN mechanisms “exist.” In one
approach [4], the Domain Name System can be used to
locate servers that can resolve names in a given name space.
(So thecollection_name identifies a collection of LDOs
in terms of acollection_name_namespace .) Web serv-
ers could be established that responded to a query of the
form “what are the DNS names of the Web servers that have
this collection”.

In a second approach [1] the “Handle” resolver system
can directly provide the answer to the query above, as well
as supplying other information about the collection, given
the collection URN. In this case the URN might look like
urn:hdl:LDO:collection_name and the Handle Sys-
tem would return a list of Web Servers that could directly
satisfy OID-based requests for LDOs in that collection. The
uniqueness of collection names comes from the Handle Sys-
tem concept of hierarchical naming authorities.

4.3 Class and Object Structure

More information on the class and object structure, tag-field
syntax, etc., may be found athttp://www-itg.lbl.gov/

WALDO.

5 Security

5.1 Security Model

The WALDO security model is intended to provide
distributed management of the object use-conditions, as well
as distributed access control for the users. (See [10].)
WALDO security involves four entities. The Web Certificate
Authority agent (e.g., the WebMaster) that manages the

14 William Johnston,et al.

server resources and acts as a trusted third-party that
provides the security services. The class collection owner
who defines the class template and grants read/write
permission for objects. The curators who are the people
granted write permission and can add, delete, and modify
certain class tags and object fields. And users of the
information who are typically granted read-only access.
Access control methods can be specified on a per-LDO basis,
or (the typical case) specified as part of the class template,
and inherited by individual LDOs.

The access control methods protect extra-LDO data (i.e.,
data referred to by links within the LDO) with the same
mechanisms as intra-LDO data since access to extra-LDO
data is mediated by access to the LDO. Protection of the
extra-LDO data from non-LDO access is affected only if that
data is behind an access control gateway with the same poli-
cies as the LDO access control.

Currently two access control methods are provided:
the.htaccess mechanism, with or without user authenti-
cation, and a public-key infrastructure (PKI) and certificate
based access control.

The.htaccess access control operates in the usual way,
and involves organizing LDOs in Web server directories that
have access control lists associated with them.

The PKI access control method uses public-key certifi-
cates issued by the collection owner, potentially on a per
object basis, to provide general use-conditions. At the
moment, this mechanism is primarily used to allow a collec-
tion owner (potentially remote from the WALDO Web
server) to specify and post (e.g. on a local certificate server)
access control lists (ACLs) in the form of signed certificates.
These certificates are used as described below to provide
strong access control for LDOs. The use-condition certifi-
cates that specify access rights will provide a condition on
the user identity (e.g., individual name, group or organization
membership) and the type of access permitted (e.g., read or
write a class/collection, sub-collection, object, or object
field).

While complex schemes can be imagined and imple-
mented within this general framework, we have currently
defined mechanisms for the following (which is based on our
experience in the LBNL Image Library). Objects can inherit
their access conditions from the collection class template.

client
application

(e.g. Web
browser)

user

certificate servers
◆ identity
◆ use-conditions
◆ attributes

resource
(e.g. LDO or
collection)

au
th

or
iz

e
op

er
at

e
in

fo
rm

at
io

n
au

th
en

tic
ity

policy engine
◆ matches use-conditions and

attributes
◆ issues a capability certificate

for an entity (user)

access control gateway
◆ acquire capability
◆ authenticate user
◆ enforce “check immediate”

requirements (e.g. re-validate user
identity and/or use-condition
certificates, collect payment, etc.)

Certification
Authority
(identity)

Attribute Authority
(user

characteristics)

Resource Owner
generated

use-conditions

Figure 14. The Use-Condition based Security Architecture.

Real-Time Digital Libraries Based on Widely Distributed, High Performance Management of Large-Data-Objects 15

This allows for ACLs that refer to an entire collection. On a
per-object basis, the class access conditions can be overrid-
den by settinginherit_accessability to no_inherit ,
and specifying theClass_owner , etc., tags, in which case
these objects require explicit permission to access. The same
holds for individual tag-fields in the object. Access rights are
restrictive — if the access specification of a tag is delegated,
then specific permission is required for any access to that tag
field. This allows restricting access to certain of the LDO
components. Again, this may be inherited from the class
security prototype, or specified on a per-object basis. Only
the collection owner may define the access condition fields,
but specific access granting may be delegated. The general
approach of an object inheriting accessibility puts an addi-
tional burden of correctness on the access control gateway,
but is essential for ease of managing large collections.

The relationships of the major elements of the security
architecture are illustrated in Figure 14.

Policy-based confidentiality of data is an important
aspect of medical, commercial, and some scientific informa-
tion systems in shared environments. The long term goal of
our security architecture work is to provide access control
based on owner specified use conditions rather than explicit
enumeration of ACLs (which are a special case of use-con-
ditions.) The status of the general approach may be found at
http://www-itg.lbl.gov/security . This approach is
based on the emerging security services for distributed
enterprise in both the commercial and scientific communi-
ties. (See [10].)

6 Current Experience, Status, and Conclusions

The WALDO large-data-object system has been developed
and used at LBNL since early 1995. It currently manages
three major collections, each with a different use and
curator. The original collection is a scientific image database
that supports a small research group. This collection now
has over 1400 1–4MByte scanning electron microscope
images indexed and described as LDOs. This research group
routinely uses WALDO to locate, view, and manage their
image collection. They also use WALDO to easily share
images with colleagues at other institutions.

The second collection is the cardio-angiography video
data repository, and was built in support of a research and
development collaboration between Kaiser Permanente
Division of Research and Lawrence Berkeley National Lab-
oratory. In this project we have been gathering data on a
daily basis since June, 1996. We currently have about 60
patient cardio-angiography studies consisting of about 800
individual video clips stored on the DPSS plus an additional
140 studies that are only on the Mass Storage System. All
this data has been automatically captured, sent across a
wide-area ATM network, catalogued and entered into
WALDO with minimal human intervention. The capture

process recovers well from short-term (less than 12 hour)
network outages. In this application by virtue of a cache
located at the instrument, WALDO’s management of on-line
data is being evaluated as an alternative to the current hospi-
tal use of film. The ability of physicians to view the videos
without having to travel to the San Francisco Cardiology
facility where the films are stored is a key advantage. How-
ever, any network or server failures of even 1 or 2 minutes
duration at the time a physician wishes to view a study is a
serious inconvenience. Most of the patient-specific associ-
ated textual data about the images is kept in restricted-access
hospital data bases, and images are referenced by having
URLs pointing to a WALDO server.

The third collection is a on-line digital photo archive. We
currently have about 700 images on-line selected from the
hundreds of thousands of photos in Berkeley Lab’s archive.
These on-line photos are used to support a variety of Web
publications (e.g., [8]) and for general browsing or research
by people within and outside of the Lab.

The concept of real-time collection of data from on-line
instrument systems, followed by automatic cataloguing that
results in an elementary, but useful object store, is quite
powerful. It allows immediate meaningful access to large
classes of data that can undergo refinement over time as the
knowledge about the data increases. A high-speed, network-
based distributed cache plays a central role in our approach,
providing storage for buffering incoming data, intermediate
processing, and as an application cache. An experimental
security architecture provides data-owner defined, per-object
access control, and is intended to explore the issues and
capabilities for on-line and widely available, but strongly
protected, sensitive information.

7 Acknowledgments

The overall approach based on wide-area network
distributed high-speed caches has evolved over several years
with funding from the Mathematical, Information, and
Computational Sciences Division of the Office of Energy
Research, U. S. Department of Energy, and DARPA
Information Technology Office (the DPSS), and from the
Lawrence Berkeley National Laboratory all of which are
gratefully acknowledged.

In the Kaiser CalREN project, E-J. Pol of Philips
Research, Palo Alto, CA, designed and implemented the
workstation interface for the cardio-angiography system. Dr.
J. Terdiman, of the Kaiser Permanente Division of Research
provided the leadership for the health care aspects of the
project. Dr. Bob Lundstrum, Kaiser San Francisco Hospital,
Cardiac Catheterization Laboratory, provided guidance and
information specific to the health care application. Pacific
Bell, through its CalREN program, provided funding for
originally connecting the LBNL, Kaiser, and Philips sites to
the SF Bay Area ATM network. Sun Microsystems assisted

16 William Johnston,et al.

in various ways, including loaning equipment to several Kai-
ser sites.

Mary Thompson directs the WALDO project, Brian Tier-
ney directs the DPSS project, and Case Larsen is the imple-
menter of the underlying security architecture. The LungLab
collection is a collaboration with Jacob Bastacky, Lung
Microscopy Group, Molecular and Nuclear Medicine
Department, Life Sciences Division of Lawrence Berkeley
National Laboratory

Finally, one of us (Johnston) would like to acknowledge
Ace Allen, M.D., of the KU Medical Center in Kansas City
for enthusiastic early support of the idea of networked medi-
cal information systems; Ms. Sue Kwentus, RN, and the
MCC HOST/OSL group, for focusing some of the early
ideas; and Sprint generally, and Lt. Col. John Strand, U.S.
Army (ret.), now Director of Technology Planning and Inte-
gration at Sprint, in particular, for support of the MAGIC
backbone network (without which this work probably would
not have been done) (See [14]).

8 References

[1] W. Arms, D. Ely. “The Handle System”, An Internet
Engineering Task Force, Uniform Resource Identifiers
working group draft available athttp://

www.ietf.cnri.reston.va.us/ids.by.wg/uri.html

[2] T. Bray, R. V. Guha, “An MCF Tutorial.”http://

www.w3.org/TR/NOTE-MCF-XML/MCF-tutorial.html

[3] The Distributed-Parallel Storage System (DPSS)
Home Page (http://www-itg.lbl.gov/DPSS)

[4] R. Daniel, M. Mealling. “Resolution of Uniform
Resource Identifiers using the Domain Name System”,
An Internet Engineering Task Force, Uniform
Resource Names working group draft available at
http://www.ietf.cnri.reston.va.us/ids.by.wg/

urn.html

[5] Fuller, B., I. Richer “The MAGIC Project: From Vision
to Reality,” IEEE Network, May, 1996, Vol. 10, no. 3.

[6] Manber, U. and S. Wu, “GLIMPSE: A Tool to Search
Through Entire File Systems”. University of Arizona
Computer Science Technical Report TR 93-34.
Available athttp://glimpse.cs.arizona.edu .

[7] Greiman, W., W. E. Johnston, C. McParland, D. Olson,
B. Tierney, C. Tull, “High-Speed Distributed Data
Handling for HENP”. International Conference on
Computing in High Energy Physics, Berlin, Germany,

April, 1997. Also available athttp://www-

itg.lbl.gov/STAR .
[8] J. L. Heilbron, Robert W. Seidel, Bruce R. Wheaton,

“Lawrence and His Laboratory: A Historian’s View of
the Lawrence Years.”http://www.lbl.gov/Science-

Articles/Research-Review/Magazine/1981/

index.html

[9] Seehttp://www-itg.lbl.gov/ImgLib/

ImgLib_intro.html

[10] Johnston, W. and C. Larsen, “Security Architectures
for Large-Scale Remote Collaboratory Environments:
A Use-Condition Centered Approach to Authenticated
Global Capabilities” (draft athttp://www-

itg.lbl.gov/security/publications.html)
[11] W. Johnston, and D. Agarwal, “The Virtual

Laboratory: Using Networks to Enable Widely
Distributed Collaboratory Science” A NSF Workshop
Virtual Laboratory whitepaper. (Seehttp://www-

itg.lbl.gov/~johnston/Virtual.Labs.html)
[12] Kaiser - LBNL - Philips CalREN project. Seehttp://

www-itg.lbl.gov/Kaiser/LKP .
[13] “TerraVision: A Terrain Visualization System”. Y.

Leclerc and S. Lau, Jr. SRI International, Technical
Note #540, Menlo Park, CA, 1994. Also see:http://

www.ai.sri.com/~magic/terravision.html

[14] MAGIC (Multidimensional Applications and Gigabit
Internetwork Consortium) is a gigabit network testbed
that was established in June 1992 by the U. S.
Government’s Advanced Research Projects Agency
(ARPA). The testbed is a collaboration between
LBNL, Minnesota Supercomputer Center, SRI, Univ.
of Kansas, Lawrence, KS, USGS - EROS Data Center,
CNRI, Sprint, U. S. West, Southwest Bell, and
Splitrock Telecom. More information about MAGIC
may be found on the WWW home page at:http://

www.magic.net

[15] “National Transparent Optical Network Consortium”.
Seehttp://www.ntonc.org . (NTONC is a program
of collaborative research, deployment and
demonstration of an all-optical open testbed
communications network.)

[16] “Functional Requirements for Uniform Resource
Names”. K. Sollins, L. Masinter. Internet Engineering
Task Force, Request for Comment no. 1737.
December, 1994. Available athttp://

ds.internic.net/rfc/rfc1737.txt .
[17] “Multipurpose Internet Mail Extensions (MIME) Part

Two: Media Types”. N. Freed and N. Borenstein.

Real-Time Digital Libraries Based on Widely Distributed, High Performance Management of Large-Data-Objects 17

Internet Engineering Task Force, Request for
Comment no. 2046. November, 1996.http://

info.internet.isi.edu:80/in-notes/rfc/files/

rfc2046.txt

[18] J. Palme and A. Hopmann, “MIME E-mail
Encapsulation of Aggregate Documents, such as
HTML (MHTML).” ftp://ds.internic.net/rfc/
rfc2110.txt

[19] E. Levinson, “Content-ID and Message ID Uniform
Resource Locators.” ftp://ds.internic.net/rfc/
rfc2111.txt

[20] E. Levinson, “The MIME Multipart / Related Content-
type.” ftp://ds.internic.net/rfc/rfc2112.txt

[21] Tierney, B., W. Johnston, G. Hoo, J. Lee,
“Performance Analysis in High-Speed Wide-Area
ATM Networks: Top-to-Bottom End-to-End
Monitoring”, IEEE Network, May, 1996, Vol. 10, no.
3. LBL Report 38246, 1996. (Also seehttp://www-

itg.lbl.gov/DPSS/papers.html .)
[22] “Uniform Resource Names: A Progress Report”, The

URN Implementer Group. D-Lib Magazine, February
1996 (http://www.dlib.org/dlib/february96/

02arms.html)

Real-Time Digital Libraries
Based on Widely
Distributed, High
Performance Management
of Large-Data-Objects

William Johnston, Jin Guojun, Case Larsen,
Jason Lee, Gary Hoo, Mary Thompson,
Brian Tierney, and Joseph Terdiman, M.D.

August, 1997

LBNL-39613
UC-405

